import os
from libcity.data.dataset import TrafficStateDataset
[docs]class TrafficStateGridOdDataset(TrafficStateDataset):
def __init__(self, config):
super().__init__(config)
self.use_row_column = self.config.get('use_row_column', True)
self.parameters_str = self.parameters_str + '_' + str(self.use_row_column)
self.cache_file_name = os.path.join('./libcity/cache/dataset_cache/',
'grid_od_based_{}.npz'.format(self.parameters_str))
self._load_rel() # don't care whether there is a .rel file
[docs] def _load_geo(self):
"""
加载.geo文件,格式[geo_id, type, coordinates, row_id, column_id, properties(若干列)]
"""
super()._load_grid_geo()
[docs] def _load_rel(self):
"""
根据网格结构构建邻接矩阵,一个格子跟他周围的8个格子邻接
Returns:
np.ndarray: self.adj_mx, N*N的邻接矩阵
"""
if os.path.exists(self.data_path + self.rel_file + '.rel'):
super()._load_rel()
else:
super()._load_grid_rel()
[docs] def _load_dyna(self, filename):
"""
加载.gridod文件,格式[dyna_id, type, time, origin_row_id, origin_column_id,
destination_row_id, destination_column_id, properties(若干列)],
其中全局参数`data_col`用于指定需要加载的数据的列,不设置则默认全部加载,
根据参数`use_row_column`确定转成4d还是6d的数组,True为6d
Args:
filename(str): 数据文件名,不包含后缀
Returns:
np.ndarray: 数据数组, 4d-array or 6d-array (len_time, num_grids, num_grids, feature_dim)
/ (len_time, len_row, len_column, len_row, len_column, feature_dim)
"""
if self.use_row_column:
return super()._load_grid_od_6d(filename)
else:
return super()._load_grid_od_4d(filename)
[docs] def get_data_feature(self):
"""
返回数据集特征,scaler是归一化方法,adj_mx是邻接矩阵,num_nodes是网格的个数,
len_row是网格的行数,len_column是网格的列数,
feature_dim是输入数据的维度,output_dim是模型输出的维度
Returns:
dict: 包含数据集的相关特征的字典
"""
return {"scaler": self.scaler, "adj_mx": self.adj_mx,
"num_nodes": self.num_nodes, "feature_dim": self.feature_dim, "ext_dim": self.ext_dim,
"output_dim": self.output_dim, "len_row": self.len_row, "len_column": self.len_column,
"num_batches": self.num_batches}