Source code for libcity.data.dataset.trajectory_encoder.cara_encoder

import os
import pandas as pd

from libcity.data.dataset.trajectory_encoder.abstract_trajectory_encoder import AbstractTrajectoryEncoder
from libcity.utils import parse_time

parameter_list = ['dataset', 'min_session_len', 'min_sessions', 'traj_encoder', 'cut_method',
                  'window_size']


[docs]class CARATrajectoryEncoder(AbstractTrajectoryEncoder): def __init__(self, config): super().__init__(config) self.uid = 0 self.location2id = {} # 因为原始数据集中的部分 loc id 不会被使用到因此这里需要重新编码一下 self.loc_id = 0 self.id2locid = {} self.tim_max = 47 # 时间编码方式得改变 self.feature_dict = {'current_loc': 'int', 'current_tim': 'int', 'target': 'int', 'target_tim': 'int', 'uid': 'int' } parameters_str = '' for key in parameter_list: if key in self.config: parameters_str += '_' + str(self.config[key]) self.cache_file_name = os.path.join( './libcity/cache/dataset_cache/', 'trajectory_{}.json'.format(parameters_str)) self.poi_profile = pd.read_csv('./raw_data/{}/{}.geo'.format(self.config['dataset'], self.config['dataset']))
[docs] def encode(self, uid, trajectories, negative_sample=None): """standard encoder use the same method as DeepMove Recode poi id. Encode timestamp with its hour. Args: uid ([type]): same as AbstractTrajectoryEncoder trajectories ([type]): same as AbstractTrajectoryEncoder trajectory1 = [ (location ID, timestamp, timezone_offset_in_minutes), (location ID, timestamp, timezone_offset_in_minutes), ..... ] """ # 直接对 uid 进行重编码 uid = self.uid self.uid += 1 encoded_trajectories = [] for index, traj in enumerate(trajectories): current_loc = [] current_tim = [] for point in traj: loc = point[4] now_time = parse_time(point[2]) if loc not in self.location2id: self.location2id[loc] = self.loc_id self.id2locid[str(self.loc_id)] = loc self.loc_id += 1 current_loc.append(self.location2id[loc]) time_code = self._time_encode(now_time) current_tim.append(time_code) # 完成当前轨迹的编码,下面进行输入的形成 trace = [] target = current_loc[-1] target_tim = current_tim[-1] current_loc = current_loc[:-1] current_tim = current_tim[:-1] trace.append(current_loc) trace.append(current_tim) trace.append(target) trace.append(target_tim) trace.append(uid) encoded_trajectories.append(trace) return encoded_trajectories
[docs] def gen_data_feature(self): loc_pad = self.loc_id tim_pad = self.tim_max + 1 self.pad_item = { 'current_loc': loc_pad, 'current_tim': tim_pad } # 构建 poi 坐标字典 poi_coor = {} for index, row in self.poi_profile.iterrows(): geo_id = row['geo_id'] coor = eval(row['coordinates']) poi_coor[str(geo_id)] = coor self.data_feature = { 'loc_size': self.loc_id + 1, 'tim_size': self.tim_max + 2, 'uid_size': self.uid, 'loc_pad': loc_pad, 'tim_pad': tim_pad, 'id2locid': self.id2locid, 'poi_coor': poi_coor }
def _time_encode(self, time): if time.weekday() in [0, 1, 2, 3, 4]: return time.hour else: return time.hour + 24