import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from logging import getLogger
from libcity.model.abstract_traffic_state_model import AbstractTrafficStateModel
from libcity.model import loss
from scipy.sparse.linalg import eigs
[docs]def scaled_laplacian(weight):
"""
compute ~L (scaled laplacian matrix)
L = D - A
~L = 2L/lambda - I
Args:
weight(np.ndarray): shape is (N, N), N is the num of vertices
Returns:
np.ndarray: ~L, shape (N, N)
"""
assert weight.shape[0] == weight.shape[1]
n = weight.shape[0]
diag = np.diag(np.sum(weight, axis=1))
lap = diag - weight
for i in range(n):
for j in range(n):
if diag[i, i] > 0 and diag[j, j] > 0:
lap[i, j] /= np.sqrt(diag[i, i] * diag[j, j])
lambda_max = eigs(lap, k=1, which='LR')[0].real
return (2 * lap) / lambda_max - np.identity(weight.shape[0])
[docs]def cheb_polynomial(l_tilde, k):
"""
compute a list of chebyshev polynomials from T_0 to T_{K-1}
Args:
l_tilde(np.ndarray): scaled Laplacian, shape (N, N)
k(int): the maximum order of chebyshev polynomials
Returns:
list(np.ndarray): cheb_polynomials, length: K, from T_0 to T_{K-1}
"""
num = l_tilde.shape[0]
cheb_polynomials = [np.identity(num), l_tilde.copy()]
for i in range(2, k):
cheb_polynomials.append(np.matmul(2 * l_tilde, cheb_polynomials[i - 1]) - cheb_polynomials[i - 2])
return cheb_polynomials
[docs]class ChebConv(nn.Module):
"""
K-order chebyshev graph convolution
"""
def __init__(self, k, cheb_polynomials, in_channels, out_channels):
"""
Args:
k(int):
cheb_polynomials:
in_channels(int): num of channels in the input sequence
out_channels(int): num of channels in the output sequence
"""
super(ChebConv, self).__init__()
self.K = k
self.cheb_polynomials = cheb_polynomials
self.in_channels = in_channels
self.out_channels = out_channels
self.DEVICE = cheb_polynomials[0].device
self.Theta = nn.ParameterList([nn.Parameter(torch.FloatTensor(in_channels, out_channels)
.to(self.DEVICE)) for _ in range(k)])
[docs] def forward(self, x):
"""
Chebyshev graph convolution operation
Args:
x: (batch_size, N, F_in, T)
Returns:
torch.tensor: (batch_size, N, F_out, T)
"""
batch_size, num_of_vertices, in_channels, num_of_timesteps = x.shape
outputs = []
for time_step in range(num_of_timesteps):
graph_signal = x[:, :, :, time_step] # (b, N, F_in)
output = torch.zeros(batch_size, num_of_vertices, self.out_channels).to(self.DEVICE) # (b, N, F_out)
for k in range(self.K):
t_k = self.cheb_polynomials[k] # (N,N)
theta_k = self.Theta[k] # (in_channel, out_channel)
rhs = graph_signal.permute(0, 2, 1).matmul(t_k).permute(0, 2, 1)
output = output + rhs.matmul(theta_k)
outputs.append(output.unsqueeze(-1))
return F.relu(torch.cat(outputs, dim=-1))
[docs]class MSTGCNBlock(nn.Module):
def __init__(self, in_channels, k, nb_chev_filter, nb_time_filter, time_strides, cheb_polynomials):
super(MSTGCNBlock, self).__init__()
self.ChebConv = ChebConv(k, cheb_polynomials, in_channels, nb_chev_filter)
self.time_conv = nn.Conv2d(nb_chev_filter, nb_time_filter, kernel_size=(1, 3),
stride=(1, time_strides), padding=(0, 1))
self.residual_conv = nn.Conv2d(in_channels, nb_time_filter, kernel_size=(1, 1), stride=(1, time_strides))
self.ln = nn.LayerNorm(nb_time_filter)
[docs] def forward(self, x):
"""
Args:
x: (batch_size, N, F_in, T)
Returns:
torch.tensor: (batch_size, N, nb_time_filter, output_window)
"""
# cheb gcn
spatial_gcn = self.ChebConv(x) # (b,N,F,T)
# convolution along the time axis
time_conv_output = self.time_conv(spatial_gcn.permute(0, 2, 1, 3)) # (b,F,N,T)
# residual shortcut
x_residual = self.residual_conv(x.permute(0, 2, 1, 3)) # (b,F,N,T)
x_residual = self.ln(F.relu(x_residual + time_conv_output).permute(0, 3, 2, 1)).permute(0, 2, 3, 1) # (b,N,F,T)
return x_residual
[docs]class MSTGCNSubmodule(nn.Module):
def __init__(self, device, nb_block, in_channels, k, nb_chev_filter, nb_time_filter,
input_window, cheb_polynomials, output_window, output_dim, num_of_vertices):
super(MSTGCNSubmodule, self).__init__()
self.BlockList = nn.ModuleList([
MSTGCNBlock(in_channels, k, nb_chev_filter, nb_time_filter,
input_window // output_window, cheb_polynomials)])
self.BlockList.extend([
MSTGCNBlock(nb_time_filter, k, nb_chev_filter, nb_time_filter, 1, cheb_polynomials)
for _ in range(nb_block-1)])
self.final_conv = nn.Conv2d(output_window, output_window,
kernel_size=(1, nb_time_filter - output_dim + 1))
[docs] def forward(self, x):
"""
Args:
x: (B, T_in, N_nodes, F_in)
Returns:
torch.tensor: (B, T_out, N_nodes, out_dim)
"""
x = x.permute(0, 2, 3, 1) # (B, N, F_in(feature_dim), T_in)
for block in self.BlockList:
x = block(x)
output = self.final_conv(x.permute(0, 3, 1, 2))
return output
# 适配最一般的TrafficStateGridDataset和TrafficStatePointDataset
[docs]class MSTGCNCommon(AbstractTrafficStateModel):
def __init__(self, config, data_feature):
super().__init__(config, data_feature)
self.num_nodes = self.data_feature.get('num_nodes', 1)
self.feature_dim = self.data_feature.get('feature_dim', 1)
self.output_dim = self.data_feature.get('output_dim', 1)
self.input_window = config.get('input_window', 1)
self.output_window = config.get('output_window', 1)
self.device = config.get('device', torch.device('cpu'))
self.nb_block = config.get('nb_block', 2)
self.K = config.get('K', 3)
self.nb_chev_filter = config.get('nb_chev_filter', 64)
self.nb_time_filter = config.get('nb_time_filter', 64)
adj_mx = self.data_feature.get('adj_mx')
l_tilde = scaled_laplacian(adj_mx)
self.cheb_polynomials = [torch.from_numpy(i).type(torch.FloatTensor).to(self.device)
for i in cheb_polynomial(l_tilde, self.K)]
self._logger = getLogger()
self._scaler = self.data_feature.get('scaler')
self.MSTGCN_submodule = \
MSTGCNSubmodule(self.device, self.nb_block, self.feature_dim,
self.K, self.nb_chev_filter, self.nb_time_filter,
self.input_window, self.cheb_polynomials,
self.output_window, self.output_dim, self.num_nodes)
self._init_parameters()
def _init_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
else:
nn.init.uniform_(p)
[docs] def forward(self, batch):
x = batch['X'].to(self.device) # (B, T, N_nodes, F_in)
output = self.MSTGCN_submodule(x)
return output # (B, T', N_nodes, F_out)
[docs] def calculate_loss(self, batch):
y_true = batch['y']
y_predicted = self.predict(batch)
y_true = self._scaler.inverse_transform(y_true[..., :self.output_dim])
y_predicted = self._scaler.inverse_transform(y_predicted[..., :self.output_dim])
return loss.masked_mse_torch(y_predicted, y_true)
[docs] def predict(self, batch):
return self.forward(batch)