Estimated Time of Arrival Evaluator ================================== We have implemented several evaluation loss functions so that different models under the same task can be compared under the same standard. Evaluation Metrics ------------------ For the task of estimated time of arrival, this evaluator implements a series of evaluation indicators: ================================= ==================================================================================== Evaluation Metrics Formula ================================= ==================================================================================== MAE(Mean Absolute Error) .. math:: MAE=\frac{1}{n}\sum_{i=1}^n|\hat{y_{i}}-y_i| MSE(Mean Squared Error) .. math:: MSE=\frac{1}{n}\sum_{i=1}^n(\hat{y_{i}}-y_i)^2 RMSE(Rooted Mean Squared Error) .. math:: RMSE=\sqrt{\frac{1}{n}\sum_{i=1}^n(\hat{y_{i}}-y_i)^2} MAPE(Mean Absolute Percent Error) .. math:: MAPE=\frac{1}{n}\sum_{i=1}^n|\frac{\hat{y_{i}}-y_i}{y_i}|*100\% R2(Coefficient of Determination) .. math:: R^2=1-\frac{\sum_{i=1}^n(y_i-\hat{y_i})^2}{\sum_{i=1}^n(y_i-\bar{y})^2} EVAR(Explained variance score) .. math:: EVAR =1-\frac{Var(y_i-\hat{y_i})}{Var(y_i)} ================================= ==================================================================================== The ground-truth value is \ :math:`y=\{y_1,y_2,...,y_n\}`\, the prediction value is \ :math:`\hat{y} = \{\hat{y_1}, \hat{y_2}, ..., \hat{y_n}\}`\ ,\ :math:`n`\ is the number of samples, the mean value is \ :math:`\bar{y}=\frac{1}{n}\sum_{i=1}^ny_i`\, the variance is \ :math:`Var(y_i)=\frac{1}{n}\sum_{i=1}^n(y_{i}-\bar{y})^2`\ . Evaluation Settings ------------------- The following are parameters involved in the evaluator: Location: libcity/config/evaluator/ETAEvaluator.json - ``metrics``\ : Array of evaluation metrics, \ ``allowed_metrics``\ in evaluator class indicates the type of metrics that the task can accept, and ``metrics`` cannot exceed this range.