libcity.evaluator.utils¶
-
libcity.evaluator.utils.
evaluate_model
(y_pred, y_true, metrics, mode='single', path='metrics.csv')[source]¶ 交通状态预测评估函数 :param y_pred: (num_samples/batch_size, timeslots, …, feature_dim) :param y_true: (num_samples/batch_size, timeslots, …, feature_dim) :param metrics: 评估指标 :param mode: 单步or多步平均 :param path: 保存结果 :return:
-
libcity.evaluator.utils.
output
(method, value, field)[source]¶ - Parameters
method – 评估方法
value – 对应评估方法的评估结果值
field – 评估的范围, 对一条轨迹或是整个模型
-
libcity.evaluator.utils.
sort_confidence_ids
(confidence_list, threshold)[source]¶ Here we convert the prediction results of the DeepMove model DeepMove model output: confidence of all locations Evaluate model input: location ids based on confidence :param threshold: maxK :param confidence_list: :return: ids_list