libcity.model.traffic_demand_prediction.CCRNN¶
-
class
libcity.model.traffic_demand_prediction.CCRNN.
CCRNN
(config, data_feature)[source]¶ Bases:
libcity.model.abstract_traffic_state_model.AbstractTrafficStateModel
-
calculate_loss
(batch, batches_seen=None)[source]¶ 输入一个batch的数据,返回训练过程的loss,也就是需要定义一个loss函数
- Parameters
batch (Batch) – a batch of input
- Returns
return training loss
- Return type
torch.tensor
-
forward
(batch, batches_seen=None)[source]¶ dynamic convolutional recurrent neural network :param inputs: [B, input_window, N, input_dim] :param targets: exists for training, tensor, [B, output_window, N, output_dim] :param batch_seen: int, the number of batches the model has seen :return: [B, n_pred, N, output_dim],[]
-
predict
(batch, batches_seen=None)[source]¶ 输入一个batch的数据,返回对应的预测值,一般应该是**多步预测**的结果,一般会调用nn.Moudle的forward()方法
- Parameters
batch (Batch) – a batch of input
- Returns
predict result of this batch
- Return type
torch.tensor
-
training
: bool¶
-
-
class
libcity.model.traffic_demand_prediction.CCRNN.
DCGRUCell
(input_size: int, hidden_size: int, num_node: int, n_supports: int, k_hop: int, e_layer: int, n_dim: int)[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(inputs: torch.Tensor, supports: List[torch.Tensor], states) → Tuple[torch.Tensor, torch.Tensor][source]¶ - Parameters
inputs – Tensor[Batch, Node, Feature]
supports –
:param states:Tensor[Batch, Node, Hidden_size] :return:
-
training
: bool¶
-
-
class
libcity.model.traffic_demand_prediction.CCRNN.
DCRNNDecoder
(output_size: int, hidden_size: int, num_node: int, n_supports: int, k_hop: int, n_layers: int, n_preds: int, e_layer: int, n_dim: int)[source]¶ Bases:
torch.nn.modules.container.ModuleList
-
forward
(supports: List[torch.Tensor], states: torch.Tensor, targets: torch.Tensor = None, teacher_force: bool = 0.5) → torch.Tensor[source]¶ - Parameters
supports – list of sparse tensors, each of shape [N, N]
states – tensor, [n_layers, B, N, hidden_size]
targets – None or tensor, [B, T, N, output_size]
teacher_force – random to use targets as decoder inputs
- Returns
tensor, [B, T, N, output_size]
-
training
: bool¶
-
-
class
libcity.model.traffic_demand_prediction.CCRNN.
DCRNNEncoder
(input_size: int, hidden_size: int, num_node: int, n_supports: int, k_hop: int, n_layers: int, e_layer: int, n_dim: int)[source]¶ Bases:
torch.nn.modules.container.ModuleList
-
forward
(inputs: torch.Tensor, supports: List[torch.Tensor]) → torch.Tensor[source]¶ - Parameters
inputs – tensor, [B, T, N, input_size]
supports – list of sparse tensors, each of shape [N, N]
- Returns
tensor, [n_layers, B, N, hidden_size]
-
training
: bool¶
-
-
class
libcity.model.traffic_demand_prediction.CCRNN.
EvolutionCell
(input_dim: int, output_dim: int, num_nodes: int, n_supports: int, max_step: int, layer: int, n_dim: int)[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(inputs, supports: List)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
training
: bool¶
-
-
class
libcity.model.traffic_demand_prediction.CCRNN.
GraphConv
(input_dim: int, output_dim: int, num_nodes: int, n_supports: int, max_step: int)[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(inputs: torch.Tensor, supports: List[torch.Tensor])[source]¶ - Parameters
inputs – tensor, [B, N, input_dim]
supports – list of sparse tensors, each of shape [N, N]
- Returns
tensor, [B, N, output_dim]
-
training
: bool¶
-
-
class
libcity.model.traffic_demand_prediction.CCRNN.
GraphConvMx
(input_dim: int, output_dim: int, num_nodes: int, n_supports: int, max_step: int)[source]¶ Bases:
torch.nn.modules.module.Module
-
forward
(inputs: torch.Tensor, supports: List[torch.Tensor])[source]¶ - Parameters
inputs – tensor, [B, N, input_dim]
supports – list of sparse tensors, each of shape [N, N]
- Returns
tensor, [B, N, output_dim]
-
training
: bool¶
-
-
libcity.model.traffic_demand_prediction.CCRNN.
graph_preprocess
(matrix, normalized_category=None)[source]¶