libcity.model.trajectory_loc_prediction.DeepMove¶
-
class
libcity.model.trajectory_loc_prediction.DeepMove.
Attn
(method, hidden_size, device)[source]¶ Bases:
torch.nn.modules.module.Module
Attention Module. Heavily borrowed from Practical Pytorch https://github.com/spro/practical-pytorch/tree/master/seq2seq-translation
-
forward
(out_state, history)[source]¶ [summary]
- Parameters
out_state (tensor) – batch_size * state_len * hidden_size
history (tensor) – batch_size * history_len * hiddden_size
- Returns
(batch_size, state_len, history_len)
- Return type
[tensor]
-
training
: bool¶
-
-
class
libcity.model.trajectory_loc_prediction.DeepMove.
DeepMove
(config, data_feature)[source]¶ Bases:
libcity.model.abstract_model.AbstractModel
rnn model with long-term history attention
-
calculate_loss
(batch)[source]¶ - Parameters
batch (Batch) – a batch of input
- Returns
return training loss
- Return type
torch.tensor
-
forward
(batch)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
init_weights
()[source]¶ Here we reproduce Keras default initialization weights for consistency with Keras version
-
predict
(batch)[source]¶ - Parameters
batch (Batch) – a batch of input
- Returns
predict result of this batch
- Return type
torch.tensor
-
training
: bool¶
-