libcity.pipeline.pipeline

libcity.pipeline.pipeline.hyper_parameter(task=None, model_name=None, dataset_name=None, config_file=None, space_file=None, scheduler=None, search_alg=None, other_args=None, num_samples=5, max_concurrent=1, cpu_per_trial=1, gpu_per_trial=1)[source]

Use Ray tune to hyper parameter tune

Parameters
  • task (str) – task name

  • model_name (str) – model name

  • dataset_name (str) – dataset name

  • config_file (str) – config filename used to modify the pipeline’s settings. the config file should be json.

  • space_file (str) – the file which specifies the parameter search space

  • scheduler (str) – the trial sheduler which will be used in ray.tune.run

  • search_alg (str) – the search algorithm

  • other_args (dict) – the rest parameter args, which will be pass to the Config

libcity.pipeline.pipeline.objective_function(task=None, model_name=None, dataset_name=None, config_file=None, saved_model=True, train=True, other_args=None, hyper_config_dict=None)[source]
libcity.pipeline.pipeline.parse_search_space(space_file)[source]
libcity.pipeline.pipeline.run_model(task=None, model_name=None, dataset_name=None, config_file=None, saved_model=True, train=True, other_args=None)[source]
Parameters
  • task (str) – task name

  • model_name (str) – model name

  • dataset_name (str) – dataset name

  • config_file (str) – config filename used to modify the pipeline’s settings. the config file should be json.

  • saved_model (bool) – whether to save the model

  • train (bool) – whether to train the model

  • other_args (dict) – the rest parameter args, which will be pass to the Config