libcity.utils.GPS_utils¶
-
libcity.utils.GPS_utils.
angle2radian
(angle)[source]¶ convert from an angle to a radian :param angle: (float) :return: radian (float)
-
libcity.utils.GPS_utils.
angular_dist
(phi1, lambda1, phi2, lambda2, method='hav')[source]¶ calculate angular great circle distance with given latitude and longitude :return: angle
-
libcity.utils.GPS_utils.
destination
(phi1, lambda1, brng, distance, r=6371000)[source]¶ - Parameters
phi1 –
lambda1 –
brng –
distance –
- Returns
-
libcity.utils.GPS_utils.
dist
(phi1, lambda1, phi2, lambda2, r=6371000, method='hav')[source]¶ calculate great circle distance with given latitude and longitude, :param phi1: point one’s latitude in angle :param lambda1: point one’s longitude in angle :param phi2: point two’s latitude in angle :param lambda2: point two’s longitude in angle :param r: earth radius(m) :param method: ‘hav’ means haversine,
‘LoC’ means Spherical Law of Cosines, ‘approx’ means Pythagoras’ theorem performed on an equirectangular projection
- Returns
distance (m)
-
libcity.utils.GPS_utils.
equirectangular_approximation
(phi1, lambda1, phi2, lambda2)[source]¶ calculate angular great circle distance with Pythagoras’ theorem performed on an equirectangular projection see parameters in spherical_law_of_cosines
-
libcity.utils.GPS_utils.
haversine
(phi1, lambda1, phi2, lambda2)[source]¶ calculate angular great circle distance with haversine formula see parameters in spherical_law_of_cosines
-
libcity.utils.GPS_utils.
init_bearing
(phi1, lambda1, phi2, lambda2)[source]¶ initial bearing of a great circle route :return: 0~360
-
libcity.utils.GPS_utils.
spherical_law_of_cosines
(phi1, lambda1, phi2, lambda2)[source]¶ calculate great circle distance with spherical law of cosines phi/lambda for latitude/longitude in radians :param phi1: point one’s latitude in radians :param lambda1: point one’s longitude in radians :param phi2: point two’s latitude in radians :param lambda2: point two’s longitude in radians :return: